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a b s t r a c t

This paper describes a signal processing method for comprehensive analysis of the large data set generated
by hyphenated GC–MS technique. It is based on the study of the 2D autocovariance function (2D-EACVF)
computed on the raw GC–MS data matrix, extending the procedure previously developed for 1D to 2D
signals. It appears specifically promising for GC–MS investigation, in particular to single out ordered
patterns in complex data: such patterns can be simply identified by visual inspection from deterministic
peaks in the 2D-EACVF plot.

A case of order along the retention time axis (x = tR) is represented by a horizontal sequence of peaks,
located at the same interdistance �tR = bx, e.g., bx is the CH2 retention time increment between subsequent
terms of an homologous series. The order along the fragment mass axis (y = m/z) contains information
on analyte fragmentation patterns. Deterministic peaks appear in the 2D-EACVF plot at �m/z values

corresponding to the most abundant ion fragments – dominating fragments in MS spectrum – or to ions
generated by repetitive loss of the same ion fragment, i.e., �m/z = 14 amu produced by the [CH2]• group
loss in n-alkanes.

Method applicability was tested by processing GC–MS data of organic extracts of atmospheric aerosol
samples: attention is focused on identifying and characterizing homologous series of organics, i.e., n-
alkanes and n-alkanoic acids, since they are considered molecular tracers able to track the origin and fate

e env
of different organics in th

. Introduction

Gas chromatography coupled with mass spectrometry (GC–MS)
s currently the most widely used technique for analyzing volatile
rganic pollutants in environmental samples. The very high num-
er of applications is the result of the high efficiency of gas
hromatography separation and the good qualitative information
nd high sensitivity provided by mass spectrometry [1–5]. When
as chromatography is combined with MS, it generates extensive
mounts of data—2 or 3 orders of magnitude larger than those
rom conventional GC. However, chromatographic peak overlap-
ing, always present when multicomponent samples are separated,

akes interpretation of such data difficult as it affects the qual-

tative analysis by mass spectral information and worsens the
uantitative measurement.

∗ Corresponding author.
E-mail address: mpc@unife.it (M.C. Pietrogrande).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.07.056
ironment.
© 2010 Elsevier B.V. All rights reserved.

The quantity and complexity of GC–MS data make human
analysis of signals difficult and time-consuming, thus mak-
ing computer-assisted signal processing necessary to transform
the data into usable information, in particular, to deconvolve
incompletely resolved peaks and to interpret the chromatogram,
extracting all the analytical information hidden therein [6–13].

This paper describes a method for analysis of second-order
GC–MS data to provide a comprehensive picture of the data matrix
as a whole. The method is based on the 2D autocovariance func-
tion (2D-ACVF) computed on the raw GC–MS data matrix: the
procedure has been previously developed, and widely applied
for mono-dimensional chromatograms [14–21] and has been fur-
ther extended to 2D separations [22–25]. This extension to 2D
GC–MS data matrix appears particularly promising since it allows
identification of specific 2D data features hidden inside the data
complexity, in particular ordered patterns can be singled out. This is

due to the statistical basis of the approach: the total chromatogram
is regarded as a statistical ensemble whose general attributes can
be characterized, i.e., number of components, peak width, retention
and abundance patterns, and extent of separation. This approach
differs from deconvolution methods where a short section of the
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Fig. 1. GC–MS signal of a standard mixture containing C12–C16 n-alkanoic acid silyl derivatives. (a) GC–MS data matrix of C12–C16 n-alkanoic acids. Red arrows: constant
interdistance �tR = bx between subsequent terms of the homologous series (SIM signal at m/z = 75 + 117 amu in the enlarged insert on the left). Green, brown and purple
arrows: interdistance between the most abundant ion fragments at m/z = 75, 177 and 131 amu (MS spectra of C19 n-alkanoic acid in the enlarged inset on the right). (b) Plot
of the 2D-EACV computed on the data matrix (a), positive quadrant: deterministic 2D-EACV peaks are identified by coloured points. Red points (corresponding to red arrows
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hromatogram is investigated, usually one cluster of several over-
apping peaks, and an algorithm is used to estimate the profiles of
he individual peaks [5,8–10,12,13].

In this paper, the method is applied to GC–MS data from organic
xtracts of atmospheric aerosol samples, to obtain specific infor-
ation for identifying and characterizing homologous series of

rganics (i.e., n-alkanes and n-alkanoic acids), as relevant markers
or source apportionment studies [26–30].

. Theory

.1. The 2D autocovariance function of GC–MS data matrix

When a raw data file is acquired in a GC–MS analytical run, the
nstrument returns two-way data, i.e., a matrix containing a mass
pectrum for each scan. The matrix dimension is Nx × Ny, where the
olumns represent the elution times tR (Nx columns of mass spec-
ra) and rows represent mass spectra for each acquisition point (Ny

ows containing chromatograms for different m/z values). By way
f example, a GC–MS data matrix is reported in Fig. 1a (GC–MS of
tandard mixture containing C12–C16 n-alkanoic acid silyl deriva-
ives).

On the experimental GC–MS data matrix acquired in digitized
orm (Fig. 1a), the 2D autocovariance function can be calculated
ccording to the equation [22]:

D-EACVFk,l = 1
N N

Nx−k∑Ny−l∑(
fi,j − f̄

)(
fi+k,j+l − f̄

)
(1a)
x y
i=1 j=1

= −Nx, ..., −1, 0, 1, ..., Nx (1b)

= −Ny, ..., −1, 0, 1, ..., Ny (1c)
omologous series (EACVF on the SIM signal at �m/z = 42 amu in the enlarged inset
arrows in (a)): deterministic peaks at �m/z = 14, 42 and 56 due to interdistance
at �tR = bx in the enlarged inset on the right). (For interpretation of the references

where fi,j represents the signal intensity at the point (i,j), while f̄ is
the average intensity calculated over all the points sampled.

Nx and Ny are the maximum spans of the tR and m/z values over
which 2D-EACVF is calculated. All the nodes of the matrix Nx × Ny

are equally spaced. Each point used for computation (k and l inter-
distance values) can be converted into �x = �tR and �y = �m/z, on
the basis of the sampling frequency in GC–MS data acquisition. The
following relationships are used:

�x = k�x (2a)

�y = l�y (2b)

C (�x, �y) �x�y = 2D-EACVF(k, l) (2c)

where �x and �y are the inderdistances between subsequent points
on the tR and m/z axes, respectively. The 2D-EACVF computed over
a data matrix (Fig. 1a) can be plotted vs. the �tR and �m/z val-
ues along the two coordinate axes, thus obtaining the 2D-EACVF
plot: the positive quadrant for �x = �tR ≥ 0 and �y = �m/z ≥ 0 is
reported for the sake of simplicity (Fig. 1b), since 2D-EACVF exhibits
a C2 symmetry (Eq. (1a)), i.e., correlations in positions (�x, �y)
and (−�x, −�y) are equal, which means that both positive and
negative �tR and �m/z shifts give the same 2D-EACVF value [22].
The 2D-EACVF plot represents the correlations between positions
of subsequent peaks along the retention axis and mass fragment
m/z values in mass spectra.

The 2D-EACVF plot shows a main bidimensional Gaussian peak
computed at the axis origin (i.e., k = �tR = 0 and l = �m/z = 0): theo-
retical expressions have been developed for data matrix describing

2D separations in order to express 2D-EACVF in terms of the param-
eters for separations along the two axes, i.e., the number of single
components (SC), mtot, the SC peak standard deviation, �, the func-
tion describing the SC retention pattern (interdistance model, IM)
and the abundance distribution (abundance model, AM) [22–25].
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Fig. 2. GC–MS signal of a standard mixture containing C22–C29 n-alkanes. (a) GC–MS data matrix of C22–C29 n-alkanes. Red arrows: constant interdistance �tR = bx = 1.4 min
between subsequent terms of the homologous series (SIM signal at m/z = 57 + 71 + 85 amu in the enlarged insert on the left). Blue, brown and green arrows: interdistances
between the most abundant ion fragments at m/z = 14, 28 and 42 amu (MS spectrum of C9 n-alkane in the enlarged inset on the right). (b) Plot of the 2D-EACVF computed on
the data matrix (a), positive quadrant: deterministic 2D-EACVF peaks are identified by coloured points. Red points (corresponding to red arrows in (a)): constant interdistance
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In addition, the 2D-EACVF plot may show some peaks at k = �tR

nd l = �m/z values (indicated by coloured points in Fig. 1b).
hese peaks at k,l correspond to the most abundant interdistances
resent in the original data, i.e., the most repeated ones or those
etween the highest peaks (coloured points in the 2D-EACVF plots

n Figs. 1b and 2b). Therefore, they are called deterministic peaks,
ince they reflect the order in the data matrix: the presence of these
rdered patterns can be simply identified by visual inspection of the
D-EACVF plot, singling it out from the complexity of the 2D data
22–25].

In this paper, the 2D-EACVF method is applied for the first time
o data matrix from a hyphenated technique where retention data,
= tR, are coupled to MS data, y = m/z. The strength of the 2D-EACVF

n identifying ordered sequences along the two-coordinate space
s here applied to identify ordered structures independently gen-
rated along the two coordinate axes, i.e., retention time and mass
pectra.

.2. First dimension: retention times

GC signals from complex mixtures may display ordered struc-
ures or periodicities, due to the presence of sample components
ith related chemical structures; this order is difficult to be
etected upon visual inspection, since it is usually superimposed to
he random retention pattern that is the most common distribution
n multicomponent samples [16–18]. An example of periodicity is
escribed by the terms belonging to a homologous series that gen-

rates an ordered sequence of peaks with constant increments,
hile they do not necessarily display a substantial variation in
/z fragmentation pattern [18,19]. If nmax terms of the homolo-

ous series are present in the multicomponent sample, an ordered
equence of peaks will appear along the retention time axis (x = tR),
M signal at �m/z = 14 in the enlarged inset on the left). Blue, brown and green points
4, 42 and 58 due to interdistance between the most abundant ion fragmentations
ht). (For interpretation of the references to color in this figure legend, the reader is

where the retention time of the nth term is described by:

x(n) = ax + bxn n = 0, 1, 2, 3...nmax (3)

where ax represents the contribution of a specific functional group
to overall retention, bx the retention increment between subse-
quent terms of the homologous series, e.g., the CH2 retention
time increment (�tR = bx between subsequent terms of C12–C16 n-
alkanoic acids is indicated by red arrows in Fig. 1a). As another
example, the GC–MS data matrix of a standard mixture contain-
ing C22–C29 n-alkanes is reported in Fig. 2a: it shows a sequence
of peaks, along the x axis, characterized by a constant interdis-
tance bx = �tR = 1.4 min between subsequent terms (indicated by
red arrows).

2.3. Second dimension: MS spectra

The second dimension of GC–MS data matrix contains mass
spectra, acquired in full scan mode. The fragmentation of molecular
ions is a complex process including bond cleavage and molecu-
lar rearrangement to yield an assortment of fragment ions: their
properties – m/z values and relative abundances – provide a
clue to molecular structure and thus mass spectra are used as
“fingerprints” to identify compounds [1–4]. Even if all sorts of frag-
mentations of the original molecular ion can produce ion fragments
with random m/z value distribution, some bond cleavages yield
more stable ion fragments and are to be preferred as they gen-
erate dominating fragments with higher abundance in the mass

spectrum [3,5,10]. Moreover, organic compounds belonging to the
same homologous series often exhibit similar fragmentation pat-
terns with slight variations arising from the different substituents
in the molecule. The result is that their mass spectra may contain
characteristic ion fragments with specific m/z values diagnostic
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or the chemical class. An example is the MS spectrum of the
rimethylsilylated derivatives of carboxylic acids showing domi-
ating fragments at m/z = 75, 117 and 131 (MS spectrum of the
ylilated C16 n-alkcanoic acid in the inset on the right of Fig. 1a)
15,31].

Moreover, some chemical structures may produce a fragmen-
ion process characterized by repetitive loss of the same ion
ragment. As an example, fragmentation pattern of n-alkanes is
ue to the C–C bond breaking to produce the repetitive loss of the
CH2]

•
group, corresponding to �m/z = 14 amu. This is illustrated

y the mass spectrum of C9 n-alkane (enlarged detail on the right
f Fig. 2a), where the propyl (m/z = 43 amu), butyl (m/z = 57 amu)
nd pentyl (m/z = 71 amu) ions are the most abundant fragments
roduced by the repetitive loss of �m/z = 14 amu (blue arrows in
ig. 2a). In this case, the mass spectrum is formed by a sequence
f signals located along the y = m/z axis at the same interdistance
m/z = by so that the m/z value of the nth fragment is described by:

(n) = ay + byn (4)

here bx and by are constants.

.4. 2D GC–MS data matrix

The 2D-EACVF computation achieves the comprehensive anal-
sis of the GC–MS data matrix, since it simultaneously uses
nformation on both retention and mass fragmentation, increas-
ng the quantity and quality of information extracted from the data
5,10,12,13].

The combination of ordered distribution of signals indepen-
ently located along the two coordinate axes, x = tR and y = m/z,
enerates an ordered pattern in the 2D matrix. In this case,
he computed 2D-EACVF plot shows well defined deterministic
eaks parallel to each coordinate axis located at the repeated
tR and �m/z values (coloured points in the 2D-EACVF plots in

igs. 1b and 2b) [22–25]. They can be simply identified by a visual
nspection of the 2D-EACVF plot: the presence of these peaks is
iagnostic for ordered structures and makes it possible to deter-
ine their bx and by parameters (indicated by the coloured points

n Fig. 2b corresponding to the coloured arrows in Fig. 2a). This
roperty is the result of two concomitant abilities of the 2D-EACVF:

t cancels the effect of position randomness while it amplifies the
ecursivity of the repeated interdistances [24].

To investigate specific pattern in detail, the 2D-EACVF can be
rojected on the coordinate axes (enlarged details of Figs. 1b and
b). In particular, the intersection with the mass fragment axis
�m/z = 0) describes the TIC chromatogram since it corresponds to
he total MS signals acquired for each m/z value. 2D-EACVF intersec-
ions at specific �m/z values retain information on the SIM signals
cquired at m/z values separated by the specific �m/z values:
or n-alkanoic acids, 2D-EACVF intersection at �m/z = 42 corre-
ponds to the most abundant SIM signals at m/z = 75 and m/z = 117
enlarged inset on the left of Fig. 1b). On these 1D chromatograms,
he separation parameters can be quantitatively evaluated using
he previously developed EACVF algorithms [16–19]. The appear-
nce of deterministic EACVF peaks at �x = �tR = bx and multiple
alues �tR = bxk is diagnostic for the presence of the series and their
eight (EACVF(bxk), i.e., the EACVF value computed at �tR = bxk)

s the basis for estimating the number of terms belonging to the
rdered series, nmax [16,17]. Moreover, the EACVF values of subse-
uent peaks provide quantitative information on the distribution
f the odd/even terms, quantified by the carbon preference index,

PIEACVF [19].

The intersection of the 2D-EACVF plot with the retention time
xis at �tR contains selective information on the molecular struc-
ure of the components. For example, for the n-alkanoic acids
GC–MS data in Fig. 1a) the 2D-EACVF section at �tR = bx = 3.1 min
ta 83 (2011) 1225–1232

(enlarged inset on the right of Fig. 1b) shows deterministic peaks
at �m/z = 14, 42 and 56 amu (coloured points in Fig. 1b and in the
enlarged inset on the right). They are generated by the fragmenta-
tion pattern of the series terms, dominated by signals at m/z = 75,
117 and 131 amu values (coloured arrows in Fig. 1a and in the
related enlarged inset on the right).

By combining qualitative information from the 2D-EACVF plot
with quantitative data from the extracted 1D chromatograms, the
GC–MS data can be chracterized in terms of retention behavior and
mass fragmentation pattern.

3. Experimental

3.1. Chemicals

The standard mixtures containing known amounts of C19–C33 n-
hydrocarbons and n-alkanoic acids (from C12 to C26) were prepared
from standard compounds purchased from Fluka/Aldrich/Sigma
(Sigma–Aldrich, Srl, Milan, Italy). The mixtures were prepared in
methylene chloride by mixing proper amounts of standard com-
pounds so that all terms of the homologous series display nearly
the same concentration of 5 ng/�l.

The reagents used for derivatization of the carboxylic acids
– BSTFA (bis(trimethylsilyl) trifluoroacetamide) plus 1% TMCS
(trimethylchlorosilane) – were obtained from Aldrich Chemical Co.
(Milan, Italy). All standards and reagents used were of the high-
est purity commercially available. All solvents were trace analysis
grade (from 99.7%) from Sigma–Aldrich (Milan, Italy).

3.2. Instruments

The GC–MS system was a Scientific Focus-GC (Thermo-Fisher
Scientific Milan, Italy) coupled with PolarisQ Ion Trap Mass Spec-
trometer (Thermo-Fisher, Scientific, Milan, Italy). The column used
was a DB-5 column (L = 30 m I.D. = 0.25 mm df = 0.25 �m film thick-
ness) (J&W Scientific, Rancho Cordova, CA, USA). High purity helium
was the carrier gas with a velocity of 1.0 ml/min.

Proper temperature program conditions were selected for n-
alkanes and n-alkanoic acids to obtain temperature programming
conditions close to linearity, i.e., constant CH2 retention time incre-
ments.

The temperature program for n-alkane analysis was set as fol-
lows: the initial temperature (120 ◦C) was held constant for 3 min
and then raised to 295 ◦C at a rate of 5 ◦C/min, then further raised
to 320 ◦C at 8 ◦C/min [19]. To analyze the carboxylic acids, the
temperature-programmed analysis was performed by heating from
100 to 280 ◦C at a rate of 3 ◦C/min [32].

All samples were injected in split/splitless mode (mean split
ratio: 1:20); the injector temperature was 300 ◦C.

The mass spectrometer operated in EI mode (positive ion,
70 eV): mass spectra were acquired in full scan mode with repeti-
tive scanning from 40 to 400 m/z in 1 s. Ion source and transfer-line
temperatures were 250 and 300 ◦C, respectively.

All the n-alkanes and n-alkanoic acids were identified by com-
parison with retention times and mass spectra of reference C19–C33
n-alkane and C12–C26 n-alkanoic acid standards.

3.3. Analytical procedure

The aerosol samples (PM10) were collected daily on a pre-
combusted quartz fiber filter (20 cm × 25 cm) with an automatic

outdoor station consisting of a low volume sampler (Skypost PM,
TCRTECORA Instruments, Corsico, Milan, Italy) operating at a flow
rate of 38.3 l min−1 for 24 h. The samples were collected in winter
(January and February 2009) and in spring (April 2008) in different
sampling sites close to Bologna (Northen Italy): urban (city centre of
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ologna) and rural sites (San Pietro Capofiume, a flat, homogeneous
errain of harvested fields, about 40 km north east of Bologna). After
ampling, the procedure outlined in European Standard EN 12341
CEN, 1998) was applied for equilibration and weighing.

The studied PM samples were extracted twice with 5 ml of
ichloromethane (Sigma–Aldrich, Milan, Italy) using ultrasonic agi-
ation for 20 min. The extracts were combined, filtered with a PTFE
lter (0.45 �m) to remove insoluble particles. and then evaporated
o dryness by a gentle stream of N2. The sample was then dissolved
n isooctane (50 �l) and directly injected into the GC–MS system
or n-alkane determination [19].

For the n-alkanoic acid analysis, the dichloromethane
xtract was submitted to derivatization procedure: 30 �l
f bis(trimethylsilyl) trifluoroacetamide (BSTFA) plus 1%
rimethylchlorosilane (TMCS) were added to form trimethylsilyl
TMS) derivatives (reaction at 70 ◦C for 2 h). Then 2 �l of the sample
as injected into the GC–MS system [32].

For the n-alkanoic acid analysis, the derivatization reaction
as performed following the procedure reported in detail else-
here [32]. The sample was transferred into a 1.5-ml tube and

he solution evaporated to dryness. The silylation reagent was
mixture of BSTFA (bis(trimethylsilyl) trifluoroacetamide) plus

% TMCS (trimethylchlorosilane): 30 �l of the reagent and 70 �l
f n-isooctane were added into the tube, in addition to 5 �l of
-hexadecane used as an injection internal standard, IS (150 ng

njected). The tube was sealed with a Teflon-coated cap and the
eaction to form trimethylsilyl (TMS) derivatives was performed at
he temperaure of 70 ◦C for the duration time of 120 min. Then 2 �l
f the sample was injected into the GC–MS system.

.4. Computation

The algorithms used for signal processing of GC–MS data and
alculations were written in MATLAB© (The Mathworks, Inc. 2008)
nd run on a 1.53 GHz (256 RAM), AMD Athlon personal computer.

A new algorithm has been implemented to extend the origi-
al calculation on 1D chromatograms to a 2D data matrix [19].
he first step in GC–MS data handling was a linearization pro-
edure to rescale the original tR axis in order to obtain a strict
onstant retention increment �tR = bx between subsequent terms
f the series. The terms of the homologous series were identified in
he sample chromatogram, by comparison with retention times of
tandards analyzed under the same operating conditions; the �tR

nterdistance values between subsequent terms were evaluated,
he maximum �tR was chosen as the reference value, �tR = bx, and
ll the interdistances were stretched to reach the bx value. An inter-
olation function was used in this stretching step to preserve the
otal area of the chromatogram.

The 2D-EACVF was then numerically calculated from the lin-
arizated GC–MS data matrix according to Eq. (1a). A cyclic
alculation procedure was used (the beginning and the end of the
eparation axes are merged using negative k or l indices): in this
ay, each point of the 2D-EACVF is computed using the same num-

er of points and thus it is estimated with the same precision degree
see Ref. [22] for the details).

The previously developed MATLAB© algorithm was used to
irectly estimate the parameters mtot, nmax and CPIEACVF from the
D chromatograms obtained by intersection with the mass frag-
ent axis (�m/z = 0, TIC signal) and with specific �m/z values, i.e.,

IM chromatograms [19].
. Results and discussion

The applicability and usefulness of the 2D-EACVF method was
ested on GC–MS data matrices obtained from the analysis of atmo-
ta 83 (2011) 1225–1232 1229

spheric aerosols (PM) and attention was focused on identification
and characterization of homologous series present in the complex
samples. This application is particularly relevant for environmental
study, since it has been found that homologous series, i.e., n-alkanes
and n-alkanoic acids, are especially suited to tracking the origin
and fate of different samples, because they can originate from both
man-made and natural sources and are highly resistant to biochem-
ical degradation [26–30].

The applicability of the 2D-EACVF method was tested on PM
samples with different chemical compositions stemming from vari-
able contributions from different sources: three analyzed samples
varied in seasonality – winter vs. spring (sample 1 vs. sample 2)
– as well as sampling site location – urban vs. rural (sample 2 vs.
sample 3).

4.1. n-alkanoic acid series

The 2D-EACVF method was applied to characterize n-alkanoic
acids. It has been found that petroleum-based sources mainly
emit low molecular weight n-alkanoic acids (≤C20), while plant
waxes produce the heavier C20–C30 terms. Moreover, the rela-
tive abundance of even-vs.-odd-numbered carbon n-alkanoic acids,
described by the carbon preference index, CPI, is a key diagnos-
tic parameter in tracking the biogenic vs. anthropogenic origin of
organic inputs. In fact, anthropogenic emissions from fossil fuels
generate a random distribution of even vs. odd terms yielding
CPI values close to 1, while terrestrial plant material contains
n-alkanoic acids with a predominance of even-numbered terms
showing CPI ≥ 5 [27–30,33,34].

Analysis of these highly polar compounds requires a derivati-
zation procedure prior to GC–MS analysis: a silylation procedure
using BSTFA (bis(trimethylsilyl) trifluoroacetamide) and TMCS
(trimethylchlorosilane) has been found suitable in analysis of the
carboxylic acids in PM samples [15,32]. Moreover, the introduc-
tion of a silyl group (or groups) can enhance mass spectrometric
signals of derivatives by producing a favourable fragmentation pat-
tern dominated by derivatizing group fragments that are diagnostic
for structure investigation. In fact, MS spectra of the TMCS deriva-
tives are characterized by the most abundant fragments at m/z = 73
and 75, [Si(CH3)3]+ and [HO Si(CH3)2]+, respectively, derived by
substituting the active H atom with the –Si(CH3)3 group. In addi-
tion, monocarboxylic acids show a strong fragment at m/z = 117,
[COOSi(CH3)3]+, resulting from the trimethylsilyl group and acid
functionality. Therefore, ions at m/z = 73 and 75 and 117 can be
used to differentiate compounds bearing a –COOH group from other
classes of organics (inset on the right of Fig. 1a: MS spectrum of the
sylilated hexadecanoic acid) [31].

After derivatization, the PM samples were submitted to GC–MS
analysis and 2D data matrix acquired: as an example the 3D plot
of GC–MS data of sample 3 (collected in spring in a rural site) is
reported in Fig. 3a (20–40 min region containing lighter C12–C19
terms). An ordered sequence of peaks can be simply identified along
the retention time axis (indicated by red arrows in the figure) and
each peak displays the same fragmentation pattern along the m/z
axis. The presence of the n-alkanoic acid homologous series can
be confirmed by comparison with standards (GC–MS data of stan-
dard C12–C16 terms under the experimental conditions, red arrows
in Figs. 1b and 3b). All the studied samples show that the most
abundant alkanoic acids are the C14–C26 terms, with the highest
contribution of hexadecanoic (C16) and octadecanoic (C18) acids
[27,33].
This finding may be further supported by investigating the 2D-
EACVF plot computed on the 2D data (Fig. 3b): it clearly shows
deterministic peaks along the �tR and �m/z axes (Fig. 3b). Well-
defined peaks are clearly evident at �tR = 3.1 min and multiple
values, that are diagnostic for the presence of the homologous series
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ig. 3. GC–MS analysis of n-alkanoic acid silyl derivatives in PM sample 3. (a) GC–M
s in Fig. 1a (SIM signal at m/z = 75 + 117 amu in the enlarged insert on the left). (b)
D-EACVF peaks are identified by coloured points, as in Fig. 1b (EACVF on the SIM

R = 3.1 min in the enlarged inset on the right. (For interpretation of the references t

comparison with C12–C16 standards, red points in Figs. 1b and 3b).
n correspondence with these �tR values, deterministic peaks are
resent along the �m/z axis, that are diagnostic of n-alkanoic acid
ass spectra: they are at �m/z = 14, characteristic of the n-alkyl

hain, and at �m/z = 42 and 56, resulting from the differences in
/z values of the most abundant ions, i.e., m/z = 75, 117 and 131

coloured points in Figs. 1b and 3b and in their enlarged insets on
he right).

In addition, quantitative results can be computed by projecting
he 2D-EACVF on the �m/z axis to extract 1D chromatograms, i.e.,

ntersections at �m/z = 0 to describe the TIC chromatogram and at

m/z = 42 to represent SIM signals at the mass fragments charac-
eristic of the series, i.e., m/z = 75 and m/z = 117 (enlarged inset on
he left of Fig. 3b). From these 1D chromatograms, the separation

able 1
roperties of three investigated PM samples: comparison of data estimated using the
alculations on TIC and SIM chromatograms (5th–7th columns: conventional method).

n-alkanoic acids CPItot = �(C14–C26)/�(C13–C25)

Sample �(C12–C26) (ng/m3) 2D-EACVF method

mtot nm

PM1 urban winter 134 26 13
PM2 urban spring 202 28 13
PM3 rural spring 225 29 14

n-alkanes CPItot = �(C23–C33)/�(C22–C32)

Sample �(C21–C33) (ng/m3) 2D-EACVF method

mtot nm

PM1 urban winter 169.5 44 13
PM2 urban spring 17.6 42 13
PM3 rural spring 8.2 38 12

he reported parameters are: total concentration of homologous series terms (ng/m3, 1s
-alkanoic acids, mac, number of homologous series terms present in the mixture, nmax, c
e counted in the TIC chromatograms, ptot, and total number of alkanes, phy, and alkanoic
matrix of the 20–40 min region containing lighter C12–C19 terms. Coloured arrows:
f the 2D-EACVF computed on the data matrix (a), positive quadrant: deterministic
al at �m/z = 42 amu in the enlarged inset on the left). EACVF of the MS spectra at
r in this figure legend, the reader is referred to the web version of the article.)

parameters and the series properties can be quantitatively evalu-
ated by the EACVF method: the total number of components, mtot,
from the TIC signal, the number of terms of the homologous series,
nmax, and the carbon preference index, CPIEACVF, from the signal at
�m/z = 42 [19]. Computations were performed on the three inves-
tigated samples and the results are reported in Table 1 (2nd–4th
columns, EACVF estimation). The high CPIEACVF values in the 6–9
range are consistent with the strong even/odd preference of n-
alkanoic acids, in particular with the predominant contribution of
the even terms C16 and C18, that are known to be the most abun-

dant species in most PM samples (enlarged detail on the left of
Fig. 3a) [27–30,33]. In addition, the separation parameters were
also estimated from the 1D chromatograms, TIC (intersection at
�m/z = 0, enlarged inset on the left of Fig. 3a) and SIM signal (inter-

2D-EACVF method (2nd–4th columns, 2D-EACVF estimation) and conventional

Conventional method

ax CPIEACVF ptot nmax CPIconv

.1 6.5 20 13 6.3

.6 7.6 21 14 7.8

.2 9.8 21 14 9.2

Conventional method

ax CPIEACVF ptot nmax CPIconv

.3 1.1 35 15 1.2

.1 1.2 32 13 1.2

.7 1.6 32 13 1.7

t column), total number of components, mtot, total number of n-alkanes, mhy, and
arbon preference index, CPIEACVF and CPIconv value, total number of peaks that can
acids, pac, that can be counted on the SIM chromatograms.
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ig. 4. GC–MS signal of the PM urban sample 1 for the analysis of C21–C33 n-alkan
/z = 57 + 71 + 85 amu in the enlarged insert on the left). (b) Plot of the 2D-EACVF

dentified by coloured points, as in Fig. 2b (EACVF on the SIM signal at �m/z = 14 i
nset on the right. (For interpretation of the references to color in this figure legend

ection at �m/z = 42) using the conventional procedure, based on
eak integration and computation on peak area. From the TIC chro-
atograms the number of peaks, ptot, can be counted, while from

he SIM signals the number of terms of the series, nmax, and their
ven/odd prevalence can be estimated, CPIconv (obtained data in
able 1, 5th–7th columns, conventional calculations). The data
btained with the two independent procedures were compared to
heck the reliability of 2D-EACVF results. It must be underlined
hat the 2D-EACVF approach makes it possible to estimate the total
umber of components effectively present in the mixture – mtot

while the parameter experimentally accessible with the con-
entional procedure is the number of peaks counted ptot: usually
tot ≤ mtot, as a consequence of peak overlapping.

The close agreement between the data (Table 1, nmax, 3rd vs. 6th
olumns, CPIEACVF, 4th column, vs. CPItrad, 7th column) is an exper-
mental evidence that the study of 2D-EACVF and its intersections

ith the coordinate axes is indeed a useful tool for the comprehen-
ive interpretation of the plethora of the GC–MS data, thus making
t possible to obtain unequivocal identification of n-alkanoic acids
nd accurate characterization of their chemical composition.

.2. n-alkane series

The PM samples were analyzed to extract information on the n-
lkane content. The 3D plot of GC–MS data matrix obtained from the
rban sample PM1 is shown in Fig. 4a, where the C21–C33 n-alkane
erms are identified. Their distribution profile shows the contribu-
ion of vehicular exhaust and lubricant residues, higher abundance
f C24 and C25 terms, as well as emission from biological sources,
haracterized by C27, C29, and C31 terms, displaying odd carbon
umber preference (more clearly shown in the SIM chromatogram

t m/z = 57, 71 and 85 amu, enlarged inset on the left of Fig. 4a).
n addition, the GC–MS signal shows the presence of some alkanes
hat cannot be resolved by GC analysis and display a similar MS
ragmentation pattern to generate a cluster of unresolved peaks
UCM band, in the enlarged inset of Fig. 4a). This is a typical pattern
M sample 1. (a) GC–MS data matrix. Coloured arrows: as in Fig. 2a (SIM signal at
uted on the data matrix (a), positive quadrant: deterministic 2D-EACVF peaks are
enlarged inset on the left). EACVF of the MS spectra at tR = 1.4 min in the enlarged
eader is referred to the web version of the article.)

of GC analysis of PM samples, in particular those collected in urban
sites, making the chromatogram evaluation challenging due to the
convolution with the unresolved cluster [30,34–36].

The presence of a huge amount of n-alkanes in the sample
generates an ordered pattern in the GC–MS signal formed by the
sequence of n-alkane peaks located at a constant interdistance
�tR = 1.4 min (red arrows in Fig. 4a and the enlarged inset on the
left of Fig. 2a) along the tR axis and an ordered series of mass frag-
ments separated by a �m/z = 14 amu increment along the mass axis
(coloured arrows in the enlarged inset on the right of Fig. 2a).

As a consequence, the 2D-EACVF plot computed on the whole
GC–MS data matrix (plot in Fig. 4b) shows well defined determinis-
tic peaks located at �tR = 1.4 min and multiple values �tR = 2.8 min,
�tR = 5.2 min along the �tR axis and at �m/z = 14 amu and mul-
tiple values �m/z = 28 amu, �m/z = 42 amu along the �m/z axis
(coloured points in Fig. 4b and its enlarged insets). These peaks are
dignostic to identify the n-alkane series, even if they are superim-
posed to the contribution of the UCM band (comparison between
Figs. 2b and 4b). This result confirms that the EACVF approach is
a useful tool to deconvolve complex signals by separating the n-
alkane ordered contribution from the unresolved cluster (compare
enlarged insets on the left of Figs. 2b and 4b).

To quantitatively evaluate the separation parameters, the EACVF
method was applied to 1D signals obtained by projecting the
2D-EACVF on the mass fragment axis at �m/z = 0, i.e., TIC chro-
matograms, and at �m/z = 14, i.e., SIM chromatograms, at m/z = 57,
71 and 85 amu. The separation parameters – the total number of
components, mtot, the number of terms of the homologous series,
nmax, and the carbon preference index, CPIEACVF – were computed
and compared with the data obtained by the conventional pro-
cedure (Table 1, 2nd–4th columns, EACVF estimation, vs. 5th–7th

columns, conventional calculations). The close agreement between
the data (Table 1, nmax, 3rd vs. 6th columns, CPIEACVF, 4th col-
umn, vs. CPItrad, 7th column) is an experimental evidence of the
reliability of the results obtained. In particular, CPI value can be
accurately estimated, as a key parameter in differentiating between
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missions stemming from anthropogenic use of fossil fuels – which
enerate a random distribution of odd vs. even terms yielding CPI
alues close to 1 – and those from terrestrial plant material con-
ainig a predominance of odd-numbered terms showing CPI ≈ 5–10
27,30,35–39]. For all the studied samples, CPIEACVF values close
o 1 were obtained suggesting a major contribution of petroleum
esidues derived from vehicular emissions as compared to biolog-
cal inputs [35–38]. It must be noted that reliable results were also
btained from the GC–MS signals of urban PM samples (PM1 and
M2 samples), displaying the greatest interference from the unre-
olved UCM band [29,30,35–37]. Moreover, a close examination of
he data in Table 1 points out that the method reliability is inde-
endent of the n-alkane content, since accurate results are obtained
rom samples largely varying in concentration level. In fact, the total
-alkane concentration in PM1 (urban winter sample) is nearly 20
imes higher than in PM3 (rural spring sample, Table 1, 1st column)
29,34–37].

. Concluding remarks

The described results reveal the effectiveness of the 2D-EACVF
rocedure for handling the tremendous amount of highly complex
nalytical-chemical information produced by hyphenated tech-
iques. In particular, the strength of the 2D autocovariance function
ethod lies in its ability to simply single out ordered structures

idden in the complex data, by combining information derived
rom retention behavior and mass fragmentation pattern. This has
roved particularly useful in identifying and characterizing homol-
gous series as molecular markers to trace the origin and fate of
rganics in the environment.

Therefore, the approach can be proposed as a signal process-
ng method for direct data analysis of non-pretreated two-way
ata with a simple procedure, not very demanding in terms
f computer power. This appears mainly promising for high-
hroughput analysis of the large data sets generated by chemical
nvironmental monitoring, as a procedure able to extract large
mounts of chemical information with low labour and time
equirements.

As the first application to GC–MS data matrix, the described
ethod only achieves a qualitative description of the 2D-EACVF

lot, while the quantitative estimation of the separation param-
ters is based on the 1D chromatograms extracted from 2D data.
urther developments of this topic are currently in progress and
heoretical models and algorithms are being developed to extend
he method to quantitative computations. The approach presented
ere can also be applied to other hyphenated separation techniques
e.g., HPLC–UV and LC–MS) where peak shift, peak shape changes
nd baseline contributions are often even bigger issues.
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